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Analyzing network data is an important problem to network users
and network designers to optimize network usage during operations or
reorganize network structure. We present a new predictive approach
to the analysis of the network performance in traffic patterns and
variation with the network conditions via the best predictive gen-
eralized linear mixed model (GLMM). The GLMM is built for the
best predictive performance, in which the parameter estimates are
obtained by minimizing the mean-squared prediction error (MSPE).
In order to deal with the big data collected by the network, the best
predictive GLMM is combined with the Lasso to enhance the compu-
tation efficiency, and an innovative approach using the bootstrap is
discussed. Both the network data and simulation studies support our
new approach in that (1) the highest prediction accuracy even under
a model misspecification; and (2) the least computation time com-
pared to the Estimation-oriented GLMM with Lasso and Stepwise
Selection GLMM. A major computational advantage of our method
is that, unlike some of the current approaches, our method does not
require the EM procedure.

1. Introduction. Efficient data access is essential for sharing massive
amounts of data among many geographically distributed collaborators. The
analysis of network traffic is getting more and more important today to ef-
ficiently utilize the limited resources offered by the network infrastructures
and plan wisely large data transfers. Data transfer performance for large
dataset can be improved by learning the current condition and accurately
predicting the future network performance. Short-term prediction of net-
work traffic performance guides the immediate scientific data placements
for network users. Long-term forecast of network traffic enables the capacity
planning of the network infrastructure up to the future needs for network
designers. Such predictions become non-trivial when amounts of network
measurement data grow in unprecedented speed and volumes, and misspeci-
fied models are used. The available data sources are SNMP [1] and flow-level
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data such as Cisco’s NetFlow[2]. SNMP provides low-volume data which is
a single time series regarding the time and the corresponding traffic volume
in the network. Based on SNMP, statistical network analysis has conducted
recently by Hu et al [7] and Antoniades et al [8]. On the other hand, Net-
Flow measurements provide high volume with abundant specific information
of each data flow such as time, path and delivery condition.

Based on the NetFlow measurements, statistical models are built to pre-
dict network usage in this paper. For network users, an accurate prediction
of duration of a transfer can help choosing the start time, the path and the
delivery condition. For example, a practical issue is to predict the required
time to finish a transfer given the data size, the start time and the source
and destination addresses. For network designers, accurate prediction will
help prepare the future needs and match the network requirements and the
bandwidth in long run. For example, if a selected path is predicted to have
frequent congestions, then the designer can accordingly expand the network
bandwidth to meet the size of the transfers in the path or rerouting partial
data flow in alternative paths.

The motivation for modeling the NetFlow measurements using Gener-
alized Linear Mixed Model (GLMM) comes from two perspectives: (1) the
features of NetFlow data; and (2) the capability of GLMM. NetFlow records
are composed of multiple time series with uneven collecting time stamps, and
thus the traditional single time series model is infeasible to model the data.
Also, NetFlow records show mixed effects in the data, and simple considera-
tion of fixed effects will cause information loss in the modeling [9]. Moreover,
the large volume and high dimension of NetFlow data require a fast algo-
rithm so that future transfer planning can respond quickly to the predicted
future network condition. On the other hand, GLMM has the capability of
flexible structure of the model in the link function, variance sourcing and
incorporating mixed effect without restriction on the size of data, and thus
fits our needs of analyzing the NetFlow data.

Previous research in Jiang et al. [4] and Bondell [5] discussed two issues
in Linear Mixed Model (LMM), which is the GLMM with identity link and
Gaussian assumption. Jiang et al. [4] shows how to obtain the best prediction
in the LMM (Linear Mixed Model) and Bondell [5] uses the Lasso to select
random effect in LMM for the estimation purpose. However, there are no
existing methods for selecting both random effects and fixed effects for the
purpose of best prediction via the Lasso [3] in LMM.

To match GLMM with the prediction interest and NetFlow data, we im-
prove the GLMM in these aspects, in Section 2. We discuss the approach
to obtain the estimates of fixed and random effects by Lasso with minimum
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mean squared prediction error (MSPE) in LMM. Then, we extend the results
to GLMM with the log link and Poisson assumption.

A major computational advantage of our method is that, unlike Bondell
[5] and Ibrahim [10], which require to utilize the EM algorithm [11] in order
to handle the unobserved random effects, our procedure does not requires
the EM, then thus saves computing time.

We propose a new approach based on bootstrapping to select the optimal
penalty parameter λ in Lasso. In the theoretical derivation, two advantages
of this approach are analyzed: immunity to model misspecification and fast
computational algorithm. After discussing the methodology in Section 2,
Section 3 and Section 4 show the NetFlow data study and the simulation
results, followed by the summary and discussion.

2. Methodology. In this section, we first discuss the NetFlow mea-
surements with its format and how it matches with GLMM. Then, we show
the derivation of the best predictive GLMM with Lasso.

2.1. NetFlow dataset. NetFlow measurements provide high volume with
abundant specific information for each data flow as shown in Table 1 (with
IP address is masked for privacy issues). For each record, it has the following
variables list.

Start, End The start and end time of the recorded data transfer.
Sif, Dif The source and destination interface assigned automatically for the

transfer.
SrcIPaddress, DstIPaddress The source and destination IP addresses of

the transfer.
SrcP, DstP The source and destination Port chosen based on the transfer

type such as email, FTP, SSH, etc.
P The protocol chosen based on the general transfer type such as TCP,

UDP, etc..
Fl The flags measured the transfer error caused by the congestion in the

network
Pkts The number of packets of the recorded data transfer.
Octets The Octets measures the size of the transfer in bytes.

Considering features of NetFlow data and the application interests, Gen-
eralized Linear Mixed Model (GLMM) is suggested in this paper to predict
the network performance for the following reasons.

• NetFlow record is composed of multiple time series with uneven col-
lecting time stamps. Because of this feature, traditional time series
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Table 1
NetFlow Records

Start End Sif SrcIPaddress(masked) SrcP Dif
DstIPaddress(masked) DstP P Fl Pkts Octets

0930.23:59:37.920 0930.23:59:37.925 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 22364 6 0 1 52

0930.23:59:38.345 0930.23:59:39.051 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 28335 6 0 4 208

1001.00:00:00.372 1001.00:00:00.372 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 20492 6 0 2 104

0930.23:59:59.443 0930.23:59:59.443 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 26649 6 0 1 52

1001.00:00:00.372 1001.00:00:00.372 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 26915 6 0 1 52

1001.00:00:00.372 1001.00:00:00.372 179 xxx.xxx.xxx.xxx 62362 175
xxx.xxx.xxx.xxx 20886 6 0 2 104

Fig 1. Relationship (Number of Packets v.s. Duration) on 16 Different Paths, showing
mixed effect such as transfer path exists



ANALYZING HIGH-SPEED NETWORK DATA 5

methods such as ARIMA model, wavelet analysis, and exponential
smoothing model are not applicable since they are designed for evenly
collected time stamps and mainly dealing with a single time series.
Some researches have extended their usage in two time series, but the
complexity and inefficiency block them to go beyond. Thus, there is a
need for a model for multiple time series without constraints of even
collection of time stamps. At the same time, GLMM can fully uti-
lize all variables in the dataset with no need for an even-spaced time
variable.
• NetFlow record is a multivariate dataset showing mixed effects. In

Figure 1, we see that with the increasing number of packets in a data
transfers, it takes longer time in general to finish data transfer. This
suggests that the number of packets can be a fixed effect to predict
the duration of a data transfer. Moreover, we see in different network
paths, the fluctuation patterns in terms of slope rate and spread range
are different for duration against the number of packets. This suggests
that the network path for data transfer can be considered as a random
effect to explain the duration under varying conditions. Thus, in terms
of modeling mixed effects, GLMM has the strength over Generalized
Linear Model (GLM) that only considers fixed effect, and it has the
flexibility over Linear Mixed Model(LMM) that can only model con-
tinuous response variable along with Gaussian assumption. GLMM is
general in a sense that it expands the choice of underlying distribution
by relating the linear model to the response variable via a link function
and categorizes the variance source by measuring the random effects.
• NetFlow measurements are big data with millions of observation for

a single router within a day and 14 variables in each record with 30s
or 40s interaction terms as candidates. The large volume of the data
requires an efficient modeling. When identifying distinctive patterns
within each group, traditional hierarchical models divide the data ac-
cording to groups, and then model each group. However, there are
three main reasons that these models are not feasible in this case:

– The grouping factor is not clear and requires investigation to
identify the variable that classify the observed data. Data explo-
rative analysis shows that the grouping factor can be a path of the
data transfer, the delivering time of the day, the transfer protocol
used and their combination. If using hierarchical model, we need
to model the data several times by choosing different grouping
factor. However, when using GLMM, the significance of random
effect will suggest the grouping factor on the response variable.
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– Hierarchical models make the prediction accuracy worse, since
their errors have the lower convergence rate to 0 than GLMM.

– GLMM provides one model for all dataset, while hierarchical
models generate one model per each group, thus complex and
inefficient.

2.2. Generalized Linear Mixed Model. The GLMM is defined with a vec-
tor of random effects v and the responses y1, ..., ym of m groups that are
conditionally independent such that the probability density function(pdf)
of each response fi(yi|v) follows the exponential family with

(2.1) E(yi|v) = µi, g(µi) = x′iβ + z′iv, g
−1 = h

where v ∼ N(0,Φ), xi is the observed fixed effect, and zi is the index that
indicates the group of random effect.

The g(.) is the link function, and takes various forms such as Gaussian,
Poisson and Logit with different assumptions of the model. In the NetFlow
data, the only two types of varaibles are (1) continuous variables such as
the size of the data transfer and the duration measured in milliseconds,
and (2) count variables such as the number of congestions or the number of
extreme large data transfers within a certain time window length. In order
to predict these two types of response variable, the GLMM are constructed
in the following two types.

• yi is the continuous variable, and assumed g(x) = x, yi|v follows Gaus-
sian distribution.
• yi is the count variable, assumed g(x) = log(x), yi|v follows Poisson

distribution.

The mixed effects θ of prediction interest and its Best Predictor (BP) θ̌
under assumed model M are

(2.2) θ = h(F ′xβ +R′v), where F and R are known matrices

and

(2.3) θ̌ = EM,ψ(θi|y) = hM,i(ψ, yi), where the parameter set ψ = {β,Φ}

M stands for the assumed model, and hM,i is the function showing the BP
of θ connected with ψ and yi. The MSPE to be minimized can be expressed
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as

(2.4)

MSPE(θ̌) = E(|θ̌ − θ|2)

=
m∑
i=1

E{hM,i(ψ, yi)− θi}2

= E{
m∑
i=1

h2M,i(ψ, yi)} − 2
m∑
i=1

E{hM,i(ψ, yi)θi}+
m∑
i=1

E(θ2i )

= I1 + 2I2 + I3

Note that, unlike EM,ψ, which depends on the assumed model as well as the
parameter ψ, the E in 2.4 is with respect to the true underlying distribution
of y and θ, which may be unknown but not model dependent. This is a key
feature of the approach (Jiang et.al [4]).

First consider the single case that Φ i sknown. Denote the MSPE in (2.4)
by MSPE(β). Then, it is straightforward to apply the Lasso to select the
fixed effects, that is,

(2.5) β̌ = argminβ(MSPE(β) + λ|β|)

However, selecting the random effects using the Lasso is not as simple. This is
because the insignificant fixed effects are eliminated with its coefficient β di-
minishing exactly to 0; however, insignificant random effects are eliminated
with the corresponding whole columns and whole rows of the covariance
matrix diminishing exactly to 0 (Bondell [5] and Ibrahim [10]). After the
covariance matrix is reformed, its positive definite property should also be
maintained. In order to solve this difficulty, we use theCholesky decomposi-
tion on the covariance matrix.

(2.6) Φ = DΛΛ′D

where D is diagonal matrix D = diag(d1, d2, ..., dq), and Λ is the lower
triangular matrix with 1’s on the diagonal.
The standardized model with the identity link function is

(2.7) yi = Xiβ + ZiDΛvi + εi where vi ∼ N(0, I)

Where ε ∼ N(0,Σ). The shrinkage penalty is imposed on di, the element
of diagonal matrix D. When di is shrunk to 0, the corresponding random
effect is eliminated. The covariance matrix Φ = DΓΓ′D is still guaranteed
to be positive definite. After the decomposition, the original random effects
coefficients Z∗i , Z

∗ change into

Zi = Z∗iDΛ, Z = Z∗D̃Λ̃, D̃ = Im ⊗D, Λ̃ = Im ⊗ Λ
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The parameter set of prediction interest ψ∗ = {β,Φ} changes into ψ =
{β, d}.

2.3. Case 1: Gaussian distribution. LMM is a special case of the GLMM
when the link function is identity, that is, h(µ) = µ in (2.1), and the under-
lying exponential family is Gaussian. The mixed effect of prediction interest
and its BP under assumed model M are

(2.8) θ = F ′xβ +R′v, where F and R are known matrices

(2.9) θ̌ = EM (θ|y) = F ′Xβ +R′EM (v|y) = F ′Xβ +R′Z ′V −1(y −Xβ).

where V = var(y) = Σ + ZZ ′

For fixed effects without Lasso, in Jiang et al [4] it shows:
With previous mentioned notationR,Z, V , and F , now writeB = R′Z ′V −1,Γ =
F ′ −B and H = Z ′F −R,

(2.10)

MSPE(θ̌) = E(|θ̌ − θ|2)
= E(|H ′v + F ′e|2)− 2E((v′H + e′F )Γ(y −Xβ))

+ E((y −Xβ)′Γ′Γ(y −Xβ))

= I1 − 2I2 + I3

Since the true model tells y = µ+ Zv + e, so

(2.11)

I2 = −2E((v′H + e′F )Γ(y −Xβ))

= −2E((v′H + e′F )Γ(y − µ))− 2E((v′H + e′F )Γ(µ−Xβ))

= −2E((v′H + e′F )Γ(Zv + e))

Among three components, I1 and I2 is not related to β. Since β is the only
parameter that matters in the minimization of MSPE(θ̌), the minimization
is equivalent to

β̌ = argmin((y −Xβ)′Γ′Γ(y −Xβ))

It’s important to note that 1) the MSPE is calculated with E(.), 2) the
expectation under the true model rather than EM (.), and 3) the expectation
related with the assumed model M. This MSPE calculation feature of this
method guarantees that β̌ is immune to model misspecification, and proves
to have better prediction accuracy than the estimates BLUP resulted from
MLE. Besides the immunity to model misspecification, selecting the fixed
effects via Lasso for efficient model selection is also imposed.

(2.12) β̌ = argminβ(y −Xβ)′Γ′Γ(y −Xβ) + λ
∑
|βi|
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The selection of random effects are not addressed in the Jiang et.al [4]
and is now discussed in this paper. For random effects selection, the MSPE
is minimized only with the part related to the parameter of interest d.

(2.13)

MSPE(θ̌) = C + tr((Z ′FF ′Z − Z ′FBZ −RF ′Z +RBZ)G)

− tr(FBΣ) + E((y −Xβ)′M ′M(y −Xβ))

+ tr((Z ′FF ′Z − Z ′FR′ −RF ′Z)G)

where C = 2tr(FF ′Σ) + tr(RR′G) is not related to d
Applying the L1 penalty along with MSPE to achieve the efficiency model
selection with Lasso, the random effects are

(2.14)

ď = argmind(y −Xβ)′M ′M(y −Xβ)

+ tr((2HBZ −HF ′Z − Z ′FR′)G)− tr(FBΣ)

+ λ
∑
|di|

The final model for prediction is built with equation (2.12) and (2.14)
and has two distinctive advantages. First, it is mentioned in the paper that
the minimization problem is not based on the assumed model M and thus
immune to the model misspecification errors. Second, the computation com-
plexity is only a minimization problem with O(nP ) where n is the number
of observation and P is the number of parameters in the full model. It is
much simpler than the MCEM algorithm that is required by Bondell [5]
and Ibrahim [10] in order to handle the unobserved random effects in their
estimation-based penalized maximum likelihood algorithms.

2.4. Case 2: Poisson distribution. The second case is when the response
variable is the counted data. Given the small area means µ1, ..., µm, the ob-
servations y1, ..., ym (with yi being from the ith small area) are independent
such that

(2.15) yi ∼ Poisson(µi); log(µi) = x′iβ + zivi

The vector of prediction interest and its BP is

(2.16) θ = h(F ′xβ +R′v), θ̌ = EM,ψ(θi|y) = hM,i(ψ, yi)

Utilizing the properties of Poisson distribution as derived in Appendix A,
(2.17)

MSPE(θ̌) = E{
m∑
i=1

h2M,i(ψ, yi)} − 2
m∑
i=1

E{hM,i(ψ, yi)θi}+
m∑
i=1

E(θ2i )

= E{
m∑
i=1

h2M,i(ψ, yi)− 2
m∑
i=1

hM,i(ψ, yi − 1)yi +
m∑
i=1

E(θ2i )}



10

Since
m∑
i=1

E(θ2i ) has no relationship with the parameter set φ = {β, d}, min-

imizing MSPE is equivalent to minimizing.

(2.18) Q(ψ) =
m∑
i=1

h2M,i(ψ, yi)− 2
m∑
i=1

hM,i(ψ, yi − 1)yi

The fixed and random effects under Poisson cases are

(2.19) β = argminβQ(ψ) + λβ

p∑
j=1

|βj |, d = argmindQ(ψ) + λd

m∑
i=1

|di|.

2.5. Selecting Penalty Parameters in Lasso. In Jiang et. al [6], the adap-
tive fence procedure raises a method to select the tuning constant cn that is
used in the model selection. The idea is that it is ideal if the selecting tun-
ing constant cn maximizes the probability of choosing the optimal model.
Suppose M is the set of candidate models which includes the optimal model
Mopt, and the selected model is M0(cn) ∈M . Then, optimal cn should be

(2.20) cn = argmaxcnP (M0(cn) = Mopt)

In order to find cn through formula (2.20), two keys must be known: (1) the
underlying distribution to compute P ; and (2) Mopt.
In Jiang et. al [6], the first key, probability distribution P can be approxi-
mated by the bootstrapped samples under the full model Mf . The second
key, Mopt can be found utilizing the idea of maximum likelihood. The opti-
mal model is the model that generates data, and thus should be the model
that is favored the most by the data. Since the bootstrapped samples almost
duplicate the information from original data, Mopt is the most supported by
the bootstrapped samples, i.e. most frequent to be selected. Extending the
adaptive fence idea into the penalty parameter selection λn in Lasso, the
procedures are:

• Step 1: Fit the full model Mf and bootstrap B samples from it
• Step 2: Select a grid of λ. For each λ, record M∗(λ), the model that is

selected the most, across B samples, i.e.M∗(λ) = argmaxMP (M0(λ) =
M(λ)) where P (M0(λ) = M(λ)) is counted as the portion that the
number of samples support model M(λ) as the selected model M0(λ)
out of B.
Note here that the final selected model M∗(λ) is related to λ. When
λ→ 0, the model that is selected the most M∗(λ) will be the full model
Mf , and when λ→ 0, the model that is selected the most M∗(λ) will
be the empty model Mempty.



ANALYZING HIGH-SPEED NETWORK DATA 11

Fig 2. The Ideal(with unique peak in the middle) Plot for Selecting Tuning Parameter λ

• Step 3: Denote P∗(λ) = P (M0(λ) = M∗(λ)) as the support percentage
of the favorite M∗(λ) given λ. Plot P∗(λ) against λ. And in the ideal
plot as Figure 2 with a unique peak in the middle, this peak is the
favorite tuning parameter λ.

In Figure 2, the two ends have peaks because when λ is either too small
or too large, only the full model Mf and the empty model Mempty will be
selected. In Jiang’s approach [6], the λ corresponding to the peak in the
middle of the plot should be the chosen λ, which maximizes the probability
that the selected model is equal to the optimal model, M0(cn) = Mopt. The
ideal situation does not always show, and in many times, one will end up in
either of the cases shown in Figure 3. The fluctuation in the left case occurs
due to the variation from the observed data and bootstraps. The platform
in the right case occurs due to the fine cut in the grid of λ.

To solve these two problems, one no longer uses evenly-spaced grid of λ,
but a dimension-related λ that λj corresponds to the j-predictors model.
The detailed new approach goes through the following steps:

• Step 1: Start from smallest λp = 0. It returns Mp, a full model with p
predictors. Keep increasing λ, until Mp−1, a model with p− 1 predic-
tors, is returned. Record the current value as λp−1
[λp, λp−1) is the range that model with p predictors are chosen.
• Step 2: Keep increasing λ, until one gets all the ranges for the dimen-

sion wise model selection. For i = 0, ..., p, [λi, λi−1) is the range that
models with i predictors are chosen.
• Step 3: For each range [λi, λi−1), evenly separate the range into a grid

by k candidate λs. For each λ, compute the model across all bootstrap
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Fig 3. The Common (without unique peak in the middle) Wiggling and Platform Plots for
Selecting Tuning Parameter λ

Table 2
The New Approach to Solve Wiggling and Platform: Dimensional Selection for Tuning

Parameter λ

dim p p-1 ... i ... 0

λ range [λp, λp−1) [λp−1, λp−2) ... [λi, λi−1) ... [λ0, λ−1)

λ∗
i λ∗

p λ∗
p−1 ... λ∗

i ... λ∗
0

p∗i p∗p p∗p−1 ... p∗i ... p∗0

samples, and chose the optimal λ within this range as λ∗i and the
corresponding p∗i (M

∗
i , λ

∗
i ). Table 2 summaries the tuning parameters’

range, the best λ and its supported percentage for each dimension.
• Step 4: Plot p∗i against λ∗i that are summarized in Table 2. The middle

peak is selected as the overall optimal λ∗, and its corresponding model
is selected as the final optimal model M∗.

The platform case is solved because each λ now selects the model with
different number of predictors, and the corresponding probability is not likely
to be the same in the neighboring range. The variation case is solved because
more robust and sophisticated choice of λj eliminates the unwanted wiggling
in the plot. The resulted plot is more close to the shape in the ideal case
shown in Fig. 2.

3. NetFlow Data Study. The sample NetFlow data is provided by
ESnet for the duration from May 1 2013 to June 30 2013. Considering the
network users’ interests, the established model should predict the duration
of a data transfer so that users will expect how long the data transfer would
take, given the size of their data, the start time of the transfer, selected path
and protocols. Considering the network designers’ interests, the established
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Fig 4. Smoothing Spline Transformed Start Time Variable, showing the nonlinear rela-
tionship between start time and transfer duration

model should predict the long time usage of the network, so that the designer
will know which link in the network is usually congested and requires more
bandwidth or rerouting the path. In the following, the models for these
two interests are built, and its prediction accuracy is compared with two
traditional GLMM algorithms: Backward-Forward selection and Estimation-
based Lasso.

3.1. GLMM on Duration. The full model predicts the transfer dura-
tion, assuming influences from the fixed effects including transfer start time,
transfer size (Octets and Packets) and the random effects including network
transfer condition such as Flag and Protocol, source and destination Port
numbers and transfer path such as source and destination IP addresses and
source and destination Interfaces. After selecting and fitting the model via
our Predictive Lasso procedure, the final model is

(3.1) y = βstarts(xstart) + βpktxpkt + Zip−pathvip−path + e

Since time variable is usually not linear related with the response variable,
smoothing spline transformation s(.) is implemented to the time variable and
the smoothing parameters are chosen automatically by cross-validation. P-
value in the final model is all less than 2e-16, which stands for the significance
of those variables in the model. The significant fixed effects in the model are
start time and number of packets, as shown in Table 3. The transformed
start time data is plotted in Figure 4 and the plot tells how the duration
varies for different start time.
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Fig 5. Standard Deviation Estimates for Random Effects in GLMM (3.1) to Predict The
Transfer Duration, showing the busier paths bring higher variation to the transfer duration

Table 3
Coefficient Estimates for Fixed Effects in GLMM (3.1) to Predict the Transfer Duration

Fixed Effects Estimates Standard Deviation P-value

Intercept -13.809 0.914 <2e-16

Start Time 0.574 0.0169 <2e-16

Packets 1.115 0.035 <2e-16

Table 4
Comparison of MSPE and Speed to Predict Duration

Est.Lasso s BF Selection Pred. Lasso

MSPE 2306 42230 127.3

Modeling Time (in seconds) 6.26e+7 5.43e+10 142
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The random effects’ standard deviance estimates are plotted in Figure 5,
and the plot shows the traffic duration varies with the different IP paths. In
our sample, there are six paths indexed as 83, 38, 41, 14, 16 and 61.The index
is categorical representation of the IP path and has no numerical values in
the model. The busier paths, such as paths 83, 38, 41 and 14 that have
dense area shown in the bottom of Figure 5 come with higher fluctuation
rates in the transfer duration. While paths 16 and 61 have less traffic and
lower variation rates, besides the uncertainty resulted from each IP path,
the background noise is estimated with a standard deviation of 11.2392.

The model suggests the importance of variation in random effects such as
IP path in the prediction of the duration. Besides the path, start time selec-
tion and assignment of packets are also significant in the prediction of the
duration. Compared to the other two approaches in Table 4, the Predictive
Lasso shows that the best prediction accuracy is 18 times better than the Es-
timation Lasso and 330 times better than the Backward-Forward Selection
and the least computation time is 4e+5 times less than the Estimation Lasso
and 3.8e+8 times less than the Backward-Forward Selection. The Predictive
Lasso greatly improves the prediction accuracy which fits the interests of
modeling and also provides efficient fast algorithm compared to the Estima-
tion Lasso and Backward-Forward Selection, as analyzed in section 2.

3.2. GLMM on Frequency of Congestion. This model predicts the fre-
quency of congestion occurred in each link of the network. The response
variable y is the number of congestion measured by the speed, BytesPerSecs.
A congestion event is defined when BytesPerSecs is less than 50, which is
the slowest 10% of network transfer speed. The full model to predict number
of congestion assuming influence from two sources: fixed effects and random
effects. The fixed effects includes transfer size (Octets and Packets), number
of transfers with their Protocol is 6, 17, 47 and 50 respectively and number
of transfers with their Flag is 0,1,2 and 4 respectively. And random effect
is transfer path, the source and destination IP address. After selecting and
fitting the model via our Predictive Lasso procedure, the final model is

(3.2) logE(y|v) = βpktsxpkts +
∑

βp=ixpi + Zip−pathvip−path

The significant fixed effects in the selected model are the transfer size, num-
ber of packets and the protocol used, as shown in Table 5.

The random effects’ standard deviance estimates are plotted in Figure
6, and the plot shows that the traffic duration in Y axis varies in differ-
ent transfer IP paths in X axis. In our sample, there are 414 paths, and
the busier path comes with the higher fluctuation rates. Besides the uncer-
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Table 5
Coefficient Estimation for Fixed Effects in GLMM (3.2) to Predict The Frequency of

Congestion

Fixed Effects Estimates Std P-value

Intercept 816.95627 0.78305 <2e-16

Packets 28.53924 0.02284 <2e-16

Protocol=6 45.43606 0.01608 <2e-16

Protocol=17 -1.58644 0.14088 <2e-16

Protocol=47 -8.39576 0.36338 <2e-16

Protocol=50 -4.96028 0.05175 <2e-16

Fig 6. Standard Deviation Estimates for Random Effects in GLMM (3.2) to Predict The
Frequency of Congestion, showing the busier paths bring higher variation to the frequency
of congestion

Table 6
Comparison of MSPE and Speed to Predict Counts of Congestion

Est.Lasso s BF Selection Pred. Lasso

MSPE 27.7 42.5 12.73

Modeling Time (in seconds) 7.31e+8 1.24e+10 10.06e+2
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tainty resulted from each IP path, the background noise is estimated with
a standard deviation of 25.316.

The model suggests the importance of variation in random effects such
as IP path in predicting the congestion frequency. Besides the path, the
protocol selection and assignment of packets also significantly affect the
congestion rate. Compared to the other two approaches in Table 6, the
Predictive Lasso shows the best prediction accuracy which is twice better
than the Estimation Lasso and four times better than the Backward-Forward
Selection, and the least computation time in modeling step which saves 7e+8
seconds than the Estimation Lasso and 1e+10 seconds than the Backward-
Forward Selection. Although the prediction accuracy improvement this case
by the Predictive Lasso is not as dramatically as in the previous case, the
saving in computing time is even much more impressive.

4. Simulation. The Predictive Lasso developed in section 2 is shown in
section 3 to have two main advantages in terms of better prediction accuracy
and less computational cost than the estimation-oriented methods. In this
section, we use simulation studies to furthur support and illustrate these two
advantages. The comparison is among the Estimation Lasso, the Backward-
Forward Selection and the Predictive Lasso. The first advantage of better
prediction accuracy is due to two reasons: First, the optimization is cal-
culated without using EM or the distribution of the assumed model. Thus
the parameter estimates are not affected by model misspecification error.
Secondly, the Predictive Lasso minimize the MSPE, while the estimation-
oriented methods target to maximize likelihood. In this way, the Predictive
Lasso gets smaller prediction error both for fixed effects prediction and ran-
dom effects prediction. Here three scenarios are considered: increasing the
variance, increasing number of observations in each group and increasing
number of groups.
The simulation data is generated from the true model,

M = β0 + β1xij1 + β2xij2 + zij1v1i + zij2v2i

i = 1, ..., N ; j = 1, ...ni;φ = diag(sd21, sd
2
2); sd1 = 3; sd2 = 2

N = 20;ni = 6; var(eij = sd2 = 3)

The Gaussian model is given as µ = M , and the Poisson model is given as
log(µ) = M . However, combined with redundant observed information and
model misspecification, the assumed model is

(4.1)
M = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + β6xij6

+ zij1v1i + zij2v2i + zij3v3i + zij4v4i + zij5v5i + zij6v6i + zij7v7i
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Fig 7. Prediction Accuracy under Case 1: Gaussian Model, showing the Predictive Lasso
has the smallest prediction error

The assumed model is misspecified altogether 4 redundant fixed effects
and 5 redundant random effects. The simulation is carried out for the two
types of GLMM and under three scenarios: increasing variance (sd), in-
creasing number of observations in each groups ni, and increasing number
of groups N . From Figure 7 showing the Gaussian Model and Figure 8 show-
ing the Poisson Model, the plots on the first row show the performance of
fixed effect prediction accuracy, and the plots on the second row show the
performance of random effect prediction accuracy. The plots on the left col-
umn, regarding increasing variance, show that the Predictive Lasso does not
significantly worse in terms of prediction error than the other two methods.
The plots on the middle column, regarding increasing number of observations
in each groups, and the plots on the right column, regarding the increasing
number of groups, both show that the Predictive Lasso always holds the
most accuracy position no matter how the data is segmented into groups.

The second advantage of Predictive Lasso is the dramatically reduced
computational costs in reaching the final model. In the optimization steps,
the Estimation Lasso and the Backward-Forward Selection require MCEM
to estimate the expectation of the likelihood of the assumed model, since
their target function involves non-observed random effects. However, the
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Fig 8. Prediction Accuracy under Case 2: Poisson Model, showing the Predictive Lasso
has the smallest prediction error

Predictive Lasso has an optimization function without the unobserved ran-
dom effects which eliminate the costly MCEM. The computational complex-
ity of the optimization problem in Predictive Lasso is O(np), where n is the
observation and p is the number of predictors, as in formula 4.2. The Es-
timation Lasso requires MCEM, an iterative algorithm that each iteration
contains optimization and requires several iteration steps until it reaches the
convengency in the final model. The Backward-Forward Selection requires l
steps to reach the final model, and in each step it needs trial-and-error to
decide which variable to drop or add after using MCEM to fit each candidate
model as shown in formula 4.4.

(4.2)
Time(PredictiveLasso) = Optimization× 1;

Complexity(PredictiveLasso) = O(np)

(4.3)

Time(EstimationLasso) = MCEM × k
= (MC +Optimization)× k;

Complexity(EstimationLasso) = O(npk)
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Fig 9. Computational Costs of Three Methods, showing the Predictive Lasso has the least
computation time for both the size of the data increases (left) and the uncertainty in the
data increases (right)

where k is the number of iteration before algorithm converges

(4.4)

Time(BF Selection) = MCEM ×
l∑

i=1

ki

Ji∑
j=1

nij ;

Complexity(BF Selection) = O(np
l∑

i=1

ki

Ji∑
j=1

nij)

where l is the number of steps before reaching to the final model; ki is
the trial-and-error in the i-th step before moving to the i + 1-th step; Ji
is the number of remaining variables in the model at i-th step, and nij is
the number of iteration before MCEM converges for the i-th trial with j-th
predictors omitted.

From the equation 4.2, 4.3 and 4.4, it is clear that the Predictive Lasso
saves large computational costs compared to the Estimation Lasso and the
Backward-Forward Selection. Moreover, the simulation supports the compu-
tational advantage of the Predictive Lasso. In Figure 9, the left graph shows
the increasing computational time when the sample size is increased, and the
right graph shows the increasing computational time, when the variation of
data is increased. The Predictive Lasso costs the least time in computation,
when the data volume is increased and uncertainty in the data is increased.
This feature perfectly meets the need of large volume and high fluctuation
from the NetFlow measurements.

The simulation examines the two advantages of the Predictive Lasso.
Firstly, under Gaussian model and Poisson model, the results show that
the Predictive Lasso has much smaller prediction error than the Estimation
Lasso and the Backward-Forward Selection. Secondly, the computational
complexity listed in the formula and the simulation result both show that
the magnitude of the consumed computational time by the Predictive Lasso
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is many times less than the other two methods.

5. Summary of Discoveries and Discussion. Large scientific data
movements require efficient utilization of the network bandwidth. Network
performance prediction helps scheduling and estimation of the large network
usage. Some of challenges in the prediction with large data movement are the
computational cost and the large number of features in the data. The conven-
tional methods such as Estimation Lasso and the Backward-Forward Selec-
tion are very computationally costly. Computational complexity is O(npk)
for Estimation Lasso shown in (4.3) andO(np×

∑l
i=1 ki

∑Ji
j=1 nij for Backward-

Forward Selection shown in (4.4), thus may not handle large data set with
n observations and p dimensions. To solve this problem, we developed an
efficient statistical method, the Predictive Lasso which finishes the predic-
tion task without multiple iterations. The computational complexity of the
proposed Predictive Lasso is only O(np) shown in (4.2), thus can handle
the large volume of data. In many cases, large data sets include multiple
features. The features degenerate the input data set into numerous, smaller
partitions. Handling such individual partitions become intractable when the
number of features grows. To solve this issues, we propose the GLMM with
Lasso model. The GLMM prevents the input data set degenerating by spec-
ifying common features.

Specifically, we presented the analysis of network measurement data to
predict the network traffic for efficient utilization of the network bandwidth
for large scientific data transfers as well as capacity planning of the net-
work infrastructure up to the future bandwidth needs. Our Predictive Lasso
combines the best prediction in GLMM and the efficient model selection
of Lasso. The method is designed by minimizing the MSPE plus the L-1
penalty on the coefficients of fixed effects and random effects. Compared to
the Estimation Lasso and Backward-Forward Selection, our method holds
the best prediction accuracy and the least computational costs, supported
by the simulation study and real application on the NetFlow measurement
data. In addition, we developed an innovative approach for selecting tuning
parameters, based on dimensional modeling with bootstrapping. The Pre-
dictive Lasso method will be used to model the performance of the data
flow over to predict the network traffic bandwidth in support of efficient
utilization of the network infrastructure.



22

APPENDIX A: DERIVIATION OF CONDITIONAL EXPECTATION
UNDER POISSON CASE

Under the Poisson case of GLMM, the overall MSPE can be expressed as

MSPE(θ̌) = E{
m∑
i=1

h2M,i(ψ, yi)} − 2
m∑
i=1

E{hM,i(ψ, yi)θi}+
m∑
i=1

E(θ2i )

Utilizing the property of Poisson distribution, the second part of MSPE
can be written as the following

(A.1)

E{hM,i(ψ, yi)θi} = E[θiE{hM,i(ψ, yi)|θ}]

=
∞∑
k=0

hM,i(ψ, k)E(e−θiθk+1
i /k!)

=
∞∑
k=0

hM,i(ψ, k)(k + 1)E{e−θiθk+1
i /(k + 1)!}

where θ = (θi)1≤i≤m. Further more,

E{e−θiθ(k+1)
i /(k + 1)!} = E{1(yi=k+1)}.

Thus, with hM,i(ψ,−1) = 0,

(A.2)
E{hM,i(ψ, yi)θi} = E{

∞∑
k=0

hM,i(ψ, k)(k + 1)1(yi=k+1)}

= E{hM,i(ψ, yi − 1)yi}

And the overall MSPE is

MSPE(θ̌) = E{
m∑
i=1

h2M,i(ψ, yi)− 2
m∑
i=1

hM,i(ψ, yi − 1)yi +
m∑
i=1

E(θ2i )}
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